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Abstract. We use the transverse-momentum dependence of the cross section for the diffractive dissociation
of high energy pions to two jets to study some non-perturbative light-cone wave functions of the pion. We
compare the predictions for this distribution by Gaussian and Coulomb wave functions as well as the wave
function derived from a solution of the light-cone Hamiltonian in the singlet model. We conclude that this
experimentally measured information provides a powerful tool for these studies.

1 Light-cone wave functions

One of the most interesting subjects of particle and nu-
clear physics is understanding the internal structure of
hadrons. It bears directly on the fundamental interactions
of the quarks and gluons that create the hadronic bound
state. It is also an essential ingredient in understanding the
hadronic strong, electromagnetic and weak interactions.
A very powerful description of the hadronic structure is
obtained through the light-cone wave functions. These
are frame-independent and process-independent quantum-
mechanical descriptions at the amplitude level. They en-
code all possible quark and gluon momentum, helicity
and flavor correlations in the hadron. The light-cone wave
functions are constructed from the QCD light-cone Hamil-
tonian [1]HQCD

LC = P+P−−P 2
⊥, where P± = P 0±P z. The

wave function ψh for a hadron h with mass Mh satisfies
the relation HQCD

LC |ψh〉 = M2
h |ψh〉.

The light-cone wave functions are expanded in terms of
a complete basis of Fock states having increasing complex-
ity. In this way the hadron presents itself as an ensemble of
coherent states containing various numbers of quark and
gluon quanta [2]. For example, the negative pion has the
Fock expansion

|ψπ−〉 =
∑

n

〈n|π−〉|n〉

= ψ
(Λ)
dū/π(ui,k⊥i)|ūd〉 + ψ

(Λ)
dūg/π(ui,k⊥i)|ūdg〉 + . . .

representing the expansion of the exact QCD eigenstate
at scale Λ in terms of non-interacting quarks and gluons.
They have longitudinal light-cone momentum fractions:
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ui =
k+

i

p+ =
k0

i + kz
i

p0 + pz
,

n∑
i=1

ui = 1 , (1)

and relative transverse momenta

k⊥i ,

n∑
i=1

k⊥i = 0⊥ . (2)

The form of ψn/H(ui,k⊥i) is invariant under longitudi-
nal and transverse boosts; i.e., the light-cone wave func-
tions expressed in the relative coordinates ui and k⊥i

are independent of the total momentum (p+, p⊥) of the
hadron. The Fock states are off mass shell with masses of
Mn =

∑n
i=1(k

2
⊥i +m2

i )/ui, where mi are the quark (cur-
rent) masses. The first term in the expansion is referred to
as the valence Fock state, as it relates to the hadronic de-
scription in the constituent quark model. The higher terms
are related to the sea components of the hadronic struc-
ture. It has been shown that once the valence Fock state is
determined it is possible to build the rest of the light-cone
wave function [3,4]. This was done for the pion using dis-
cretized light-cone quantization (DLCQ) on a transverse
lattice [5,6].

The hadronic distribution amplitude φ(u,Q2) is the
probability amplitude to find a quark and an antiquark of
the respective lowest-order Fock state carrying fractional
momenta u and 1 − u [7,8]. The pion distribution ampli-
tude and the light-cone wave function of the respective
Fock state ψ are related through [7,8]

φqq̄/π(u,Q2) ∼
∫ Q2

0
ψqq̄/π(u, k̃⊥)d2k̃⊥ , (3)

Q2 =
k2

⊥
u(1 − u)

. (4)

Two functions have been proposed to describe the momen-
tum distribution amplitude for the quark and antiquark in
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Fig. 1. Fits to the singlet-model wave function. (a) is the fit
to the full range, (b) is the fit to the low range first term, and
(c) is the fit to the higher range, second term. The resulting
parameters are a = 0.7, pa = 0.515 GeV/c, b = 2.55, pb =
1.58 GeV/c

the |qq̄〉 configuration. The asymptotic function was cal-
culated using perturbative QCD (pQCD) methods [7–11]
and is the solution to the pQCD evolution equation for
very large Q2 (Q2 → ∞):

φas(u) =
√

3u(1 − u) . (5)

Using QCD sum rules, Chernyak and Zhitnitsky (CZ) [12]
proposed a function that is expected to be correct for low
Q2:

φcz(u) = 5
√

3u(1 − u)(1 − 2u)2 . (6)

In recent experimental work [13] it was concluded that the
asymptotic distribution amplitude describes the pion well
for Q2 > 10 (GeV/c)2; see also Fig. 2b.

Alternative approaches are based directly on the wave
function, particularly for the non-perturbative low Q2-
region. Jakob and Kroll [14] proposed a Gaussian func-
tion: ψ ∼ e−βk2

⊥ . Pauli [15] considers the Lz = Sz = 0
component of the ud̄ wave function in the singlet model:
ψ(u,k⊥) ≡ Ψud̄(u,k⊥; ↑↓). Then HQCD

LC |ψh〉 = M2
h |ψh〉

translates to (8) of [15]:

M2ψ(u,k⊥) =
m2 + k 2

⊥
u(1 − u)

ψ(u,k⊥)

− α

3π2

∫
du′d2k′

⊥ ψ(u′,k′
⊥)√

u(1 − u)u′(1 − u′)

(
4m2

Q2 +
2µ2

µ2 +Q2

)
, (7)

for equal masses m1 = m2 = m, and for the mean Feyn-
man four-momentum transfer Q2 of the quarks. Replacing
the integration variable u by kz we have accordingly

u =
1
2

[
1 +

kz√
m2 + k 2

⊥ + k2
z

]
. (8)

Inversely, one expresses kz by u with

k2
z = (m2 + k 2

⊥)

(
u− 1

2

)2

u(1 − u)
. (9)

The substitution allows us to introduce the 3-vector p ≡
(k⊥, kz) and to transscribe this integral equation into[

4m2 + 4p 2]ϕ(p)

− 2α
3π2

∫
d3p ′ ϕ(p ′)
m

√
A(p)A(p′)

(
4m2

Q2 +
2µ2

µ2 +Q2

)

= M2ϕ(p) . (10)

This equation was numerically solved for ϕ(p) [15], in the
non-relativistic approximation A(p) =

√
1 + p2/m2 ∼ 1.

In this approximation, the mean four-momentum becomes
Q2 = (p−p ′)2, and the light-cone wave function ψ(u,k⊥)
is related to the reduced wave function ϕ(kz,k⊥) by

ψ(u,k⊥) =
ϕ(kz,k⊥)√
u(1 − u)

; (11)

for details see [15]. The parameters α = 0.69, m =
0.406 GeV and µ = 1.33 GeV yield the correct mass-
squared eigenvalue M2 = (140 MeV)2 for the pion and
all other isoscalar mesons.

The isotropic numerical wave function ϕ(p) is parame-
trized [16,17] for p < 0.9 GeV/c by

ϕ(p) =
N(

p2
a + p 2)2 , pa = 0.515 GeV/c , (12)

that is, like a Coulomb wave function with an abnormally
large Bohr momentum: pa > m. In Fig. 1 we present a
parametrization of the full range of the calculated wave
function [17] by a two-term Coulomb wave function. The
first term is kept as in (12) with pa = 0.515 GeV/c. The
mean momentum of the second term, pb, and the two nor-
malization constants a, b are free parameters:

ϕ(p) =
a

(p2
a + p 2)2

+
b

(p2
b + p 2)2

. (13)

By extending the parametrization to the higher momen-
tum range we can expect this function to be relevant to
the measured k⊥-distribution.

The light-cone wave function (11) with the variable
transform (9) becomes

ψ(u,k⊥) = 2N
[
a [4u(1 − u)]

3
2

[k 2
⊥ +K2

a(u)]2
+
b [4u(1 − u)]

3
2

[k 2
⊥ +K2

b (u)]2

]
,

with

K2
a(u) = 4u(1 − u)p2

a + (2u− 1)2m2 ,

K2
b (u) = 4u(1 − u)p2

b + (2u− 1)2m2 . (14)
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Fig. 2a,b. Comparison of the kt-
distribution of acceptance corrected
data with fits to cross section de-
pendence a according to a power
law, b based on a non-perturbative
Gaussian wave function for low kt

and a power law, as expected from
perturbative calculations, for high
kt. Reproduced from [13]

The main experimental test of the wave function in the
non-perturbative regime has traditionally been through
measurements of the pion electromagnetic form factor [18].
However, as shown by the authors, there is little sensitiv-
ity of the form factor to the distribution function. It is
therefore desirable to develop alternative ways for these
tests.

2 Measurement of the light-cone wave
function

The recent measurement of the pion light-cone wave func-
tion [13] is based on the following concept: a high energy
pion dissociates diffractively on a heavy nuclear target.
The first (valence) Fock component dominates at large
Q2; the other terms are suppressed by powers of 1/Q2 for
each additional parton, according to counting rules [18,
19]. This is a coherent process in which the quark and
antiquark break apart and hadronize into two jets. If in
this fragmentation process the quark momentum is trans-
ferred to the jet, measurement of the jet momentum gives
the quark (and antiquark) momentum. The proportional-
ity of the differential cross section with respect to the jet
momentum to the distribution amplitude (squared) was
asserted [20]:

d3σN

du dM2
J · d2PNt

= 2.6 GeV−6
(

GeV
κt

)8

φ2(u), (15)

and
umeasured =

pjet1

pjet1 + pjet2
.

kt is the measured transverse momentum of each jet. It is
assumed that kt(jet) ∼ k⊥(quark). This relation was also
studied via Monte Carlo simulations in order to verify
the proportionality and take into account smearings in
the fragmentation process and kinematic effects [13]. From
simple kinematics and assuming that the masses of the
jets are small compared with the mass of the di-jets, the
virtuality and mass-squared of the di-jets are given by

Q2 ∼ M2
DJ =

k2
t

u(1 − u)
.

The results of the measurement show that for kt >
1.5 GeV/c, which translates to Q2 > 10 (GeV/c)2, there
is good agreement between the data and the asymptotic
wave function. The conclusion was that the pQCD ap-
proach that led to construction of the asymptotic wave
function is reasonable for Q2 > 10 (GeV/c)2. At lower val-
ues contributions from non-perturbative effects may be-
come noticeable. In this work we focus our attention to
this transition region.

3 The kt-distribution

The kt-dependence of diffractive di-jets is another observ-
able that can show how well the various wave functions
describe the data. As shown in [20] this dependence is
expected to be dσ

dkt
∼ k−6

t for one gluon exchange pertur-
bative calculations. The experimental results are shown
in Fig. 2, reproduced from [13]. In Fig. 2a the results were
fitted by kn

t for kt > 1.25 GeV with n = −9.2 ± 0.5. This
slope is significantly larger than expected. However, the
region above kt ∼ 1.8 GeV/c could be fitted (Fig. 2b) with
n = −6.5±2.0, consistent with the predictions. This would
support the evaluation of the light-cone wave function at
large kt as due to one gluon exchange, as is the asymptotic
wave function.

The lower kt-region can be considered as a transition
from the perturbative to the non-perturbative regimes.
The experimental results go down to kt ∼ 1 GeV/c, still
large if we want to consider it as a fully non-perturbative
regime. In [13] this region was fitted with the non-per-
turbative Gaussian function: ψ ∼ e−βk2

t [14], resulting in
β = 1.78±0.1. Model-dependent values in the range of 0.9–
4.0 were used [14]. This fit, although resulting in the pa-
rameter β being consistent with theoretical expectations,
is not very satisfactory. As seen in Fig. 2b the curved shape
of the theoretical calculation is not observed in the data.

We now turn to a comparison of the experimental data
with the prediction of the wave function based on the sin-
glet model (Sect. 1). For this purpose we begin with the
same expression used by the authors of [13],
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Fig. 3a,b. Comparison of the kt-
distribution of acceptance corrected
data with fits to the cross section
derived from a the two-terms wave
function representing the full range
of the singlet-model wave function.
b The two-term wave function for
low kt, and a power law, as expected
from perturbative calculations, for
high kt

dσ
dk2

t

∝ ∣∣αs(k2
t )G(u, k2

t )
∣∣2 ∣∣∣∣ ∂2

∂k2
t

ψ(u, kt)
∣∣∣∣
2

, (16)

with αs(k2
t )G(u, k2

t ) ∼ k
1
2
t , which is based on factorization

and which actually is a double differential cross section.
Using it with the ψ from (14) gives

d2σ

du dkT
= N1

[4u(1 − u)]3

k10
t

[
1 − 1

2
K2

a(u)
k2

t

]2

[
1 +

K2
a(u)
k2

t

]8 , (17)

up to a constant N1, and up to similar terms with K2
b .

The kt-distribution is obtained from (17) as a single
differential cross section by integrating over u. But since
d2σ/du dkt is strongly peaked at u = 1

2 , an exact treat-
ment is both complicated and unnecessary. Rather, it is
approximated by removing the slowly varying terms from
the integral,

dσ
dkt

=
N1

k10
t

[
1 − 1

2
〈K2

a〉
k2

t

]2

[
1 +

〈K2
a〉

k2
t

]8

∫ 1

0
du [u(1 − u)]3 , (18)

and similarly for the b-terms. The average value 〈K2
a〉 is

evaluated in two different approximations:

〈K2
a〉 = p2

a , (19)

and

〈K2
a〉 =

8
9
p2

a +
1
9
m2 , (20)

and similarly for the b-terms. The former is obtained by
the peak value 〈K2

a〉 = K2
a

( 1
2

)
, the latter is obtained by

the weighted average

〈u(1 − u)〉 =

∫ 1
0 du w(u) u(1 − u)∫ 1

0 du w(u)
=

2
9
, (21)

〈(2u− 1)2〉 =

∫ 1
0 duw(u) (2u− 1)2∫ 1

0 du w(u)
=

1
9
, (22)

with the weight function w(u) = [u(1 − u)]3. For the par-
ticular case pa = m both approximations coincide.

In Fig. 3a we compare the prediction of (19) with the
data over the whole measured range. Only the total nor-
malization constant N1 is a free parameter. The quality of
the fit (χ2 = 1.7) improves significantly when we repeat
the fit only in the low kt-region (χ2 = 0.8). This is shown
in Fig. 3b with the higher kt range left as in Fig. 2b.

4 The u-distributions

Finally, we consider the u-dependence of the diffractive
di-jets by integrating the double differential cross section
(17) over the transverse momentum kt. E791 [13] measures
conditional u-distributions

dσ
du

∣∣∣∣
(kl,ku)

, with kl ≤ kt ≤ ku , (23)

for the momentum intervals 1.25 GeV/c ≤ kt ≤
1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.GeV/c. For compar-
ing that with theory one should integrate (17), and we do
this in terms of the auxiliary function G(u) = G(u; kl):

G(u; kl) ≡
∫

d2kt
d2σ

du dkt
θ(k2

t − k2
l ) (24)

= πN1 [u(1 − u)]3
∞∫

k2
l

dz z

[
z − 1

2K
2
a(u)

]2[
z + K2

a(u)
]8 .

The integration can be carried out analytically:

G(u; kl) = πN1
[u(1 − u)]3

[k2
l +K2

a(u)]7
(25)

×
[
k6

l

4
− k4

l

20
K2

a(u) +
k2

l

40
K4

a(u) +
1

280
K6

a(u)
]
.

The conditional u-distributions then become

dσ
du

∣∣∣∣
(kl,ku)

= G(u; kl) −G(u; ku) . (26)
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Fig. 4. The asymptotic distribution [u(1 − u)]2 (solid line) is
compared with two u-distributions calculated for 1.25 GeV/c ≤
kt ≤ 1.5 GeV/c, and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c which
almost coincide (dashed lines). All curves are normalized at
u = 0.5

In Fig. 4 we compare the predictions of (26) to the
asymptotic distribution [u(1−u)]2 of [7–11]. Only the over-
all normalization is used as free parameter. They are nar-
rower than [u(1−u)]2 mostly due to the factor [u(1−u)]3
in (24).

5 Discussion and conclusions

The agreement of the calculated kt-distribution with the
data in the transition region of Fig. 3 is interesting since
the wave function is a non-perturbative solution of a rel-
atively simple model for the light-cone Hamiltonian. The
model was developed for the bound state problem in phys-
ical mesons [15], where the low k⊥-properties are impor-
tant. It is surprising that this model describes also the
large k⊥-properties in the tail of the wave function; with-
out that a re-fit of the parameters is necessary.

The non-relativistic approximation to (10) predicts a
u-distribution quite similar to that predicted by the
asymptotic wave function. This is a result of it being a so-
lution of the light-cone Hamiltonian for a |qq̄〉 system that
conserves angular momentum. Other non-perturbative
wave functions such as that derived from a harmonic

oscillator potential do not have this property. The agree-
ment of the predicted u-distrubution with the E791 data
[13] is not as good as that of the asymptotic wave func-
tion, but this is not surprising as these data were taken in
a kt-region that is in the k⊥ tail of this function.

The non-relativistic approximation to (10) is a techni-
cal simplification but not a compelling part of the model.
It can be relaxed in future work, without major difficul-
ties.

In general, we can note that the k⊥-distribution is a
powerful tool for studying wave functions in the pertur-
bative regime and in the transition region between the
perturbative and non-perturbative regimes.

The data of E791 were taken more than ten years ago.
With realistic light-cone wave functions now existing or
coming up in the foreseeable future, dedicated diffrac-
tion experiments, possibly extended to kaons and other
hadrons, should be very valuable.
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